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Variance heterogeneity is a common feature of educational data when
treatment differences excpressed through means are present, and offen
reflects a treatment by subject interaction with respect to an outcome
variable.  ldentifying variables that account for this interaction can
enbance understanding of whom a treatment does and does not benefit in
ways that can inform and improve the treatment. Even in the absence of
a treatment effect expressed through means studying variance
beterogemeity offers insight into a treatment by identifying subject
characteristics related to beterogenesty.  This study illustrates four
methods of modeling variance heterogeneity for data from a study of the
impact of an engineering design-based STEM curriculum on student
achievement with a focus on multilevel models

Introduction

Research in education at the K-12 (e.g., Fortus, Dershimer,
Krajcik, Matx, & Mamlok-Naaman, 2004; Mehalik, Doppelt,
& Schuun, 2008; Schnittka & Bell, 2011; Wendell & Rogers,
2013) and post-secondary level (e.g., Atadero, Rambo-
Hernandez, & Balgopal, 2015; Carberry & McKenna, 2014;
Hsiung, 2012; Lawton et al, 2012; Van Meter et al, 2016)
often examines intervention (treatment) effects that are
designed to promote learning and achievement. Experimental
and quasi-experimental designs are common, and educational
studies
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increasingly use multilevel models to analyze data in which
the means of treatment and control conditions are compared.
If an intervention is effective then treatment and control
condition means differ in ways that reflect the impact of the
interventon.

When treatments are implemented in clustered
settings such as students clustered within teachers and
teachers clustered within schools group differences in
dispersion is a common characteristic of the data
(Raudenbush & Bryk, 1987). Snedecor and Cochran (1989),
Raudenbush and Bryk (1987) and others have noted that
when group means differ, group variances frequently differ in
the same direction and that studying variances can provide
important insights into the impact of an intervention.
However, heterogeneity has usually been treated as a nuisance
rather than a source of information about a treatment that
should be studied (Bryk, 1977; Keppel, 1991; Raudenbush &
Bryk, 1987), an unfortunate practice because variance
heterogeneity is common in educational, behavioral, and
psychological studies (Ruscio & Roche, 2012). In fact, there
is often no reason to assume an intervention will be equally
effective for all subjects in the treatment condition due to
individual differences or other factors (Bryk & Raudenbush,
1988; Howell, 2013). In some cases, an explicit goal of an
educational intervention is to reduce variability among
students’ outcomes (e.g., achievement gap reduction) based
on the premise that successful schools should demonstrate
high and relatively homogenous achievement (Kim & Chot,
2008). Therefote, studying variance heterogeneity should be
central to data analysis.

The putpose of this study is to illustrate a series of
methods for analyzing variance heterogeneity in multilevel
models using data from an engineering design-based STEM
cutriculum program. Section 2 provides an argument of the
need to analyze variances and what can be learned from
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doing so, and Section 3 draws on the statistics literature to
outline four methods for modeling variances. Section 4
describes a design-based engineering curriculum program and
Section 5 applies the four methods to these data. Finally, the
paper provides recommendations for using the four methods,
how to interpret the tesults using data, and outlines
implications of studying means and variances using the
engineering cutriculum study as an example.

The Need to Analyze Variances
Undetstanding the impact of an intervention reflected in
means on an outcome variable can be enhanced by learning
whether treatment and control variances are the same
(homogeneity of vatiance) or different (heterogeneity of
variance). Equal treatment and control condition variances
imply that an intervention had a similar effect on students
(i.e., the pattern of scores on an outcome was similar), and
unequal variances that an intervention caused scores to bunch
together (students tesponded similarly to an intervention) ot
spread out (students varied substantially in their response to
the intervention). In both cases studying the pattern of
variances can enhance understanding of who an intervention
does and does not benefit in ways that can inform and
improve the intervention.

General linear model-based analyses of means
typically assume that samples come from populations sharing
a common (error) variance; otherwise variances are
heterogeneous. These analyses typically rely on traditional t-
tests and F-tests that depend on data satisfying assumptions
of independence, normality, and homogeneity of variance
(Kutner, Neter, Nachtsheim, & Wasserman, 1996). There are
numerous examples in the educational research literature of
using t-tests to examine mean differences due to an
intervention (e.g., Atadero et al., 2015; Fortus et al., 2004;
Kolloffel & de Jong, 2013; Mehalik et al., 2008; Schnittka &
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Bell, 2011; Wendell & Rogets, 2013) and/or F-tests (e.g., Van
Meter et al., 2016). However, the homogeneity of variance
assumption is rarely checked. For instance, from the
educational research literature cited above only one article
repotted to have tested such assumption (Van Meter et al,

2016).

Analysis of Variance in Multilevel Models
A randomized cluster design in which students are clustered
within classrooms is employed which leads to a multilevel
model of the form:

Yij = .Boj + Z ﬂquqij +e; 0 (student model) (1)
q

Bpj = Ypo + Z YprWrj + Upj (classroom model) (2)
s

In equations (1) and (2) Y;; is the outcome of the i-th
student in the j-th classroom, f; is the intercept of the j-th
classroom (j = 1,2,...)]), By is the slope capturing the impact
of the g-th student-level predictor X; which often represents
a control variable, €;; is a normally distributed student-level
residual e;;~N (0, 0']-2), Bpj is the p-th regression coefficient
P=0,1,2, ..., Q) for the j-th classroom, Yy is a classroom-
level intercept, Ypr is a slope capturing the impact of the

classtoom-level predictor Wp;, and u,; is a normally
distributed residual for the classtoom model (Raudenbush &
Bryk, 2002).

Several authors have argued variance heterogeneity in
hierarchical (multilevel) models should be studied (Kim &
Chot, 2008; Kim & Seltzer, 2011; Leckie, French, Chatlton, &
Browne, 2014). Consider a two-level randomized cluster
design in which students (level 1) are nested within



Vol. 41.3 HElducational Rlesearch Buarterly 43

classtrooms (clusters, level 2) that is represented statistically in
equations (1) and (2), and assume classrooms are assigned at
random to a treatment or control condition. Assume Y is an
outcome vatiable measuring students’ achievement and both
student (e.g., gender, race, ie, X in equation (1)) and
classroom predictors (e.g., treatment indicator, percentage of
English language learners, i.e., W;; in equation (2)) appeat in
the model. Variance heterogeneity is commonly conceived as
the result of non-modeled interaction effects of student
characteristics with treatment (Bryk & Raudenbush, 1988;
Kim & Seltzer, 2011), i.e., student characteristics X treatment
interactions are present in the data and have not been taken
into account. Such interactions can also occur between
treatment and classroom characteristics and efforts to
explicitly model interactions between treatment and
covariates at both level 1 and 2 have been made (e.g., Mayer,
Nagengast, Fletcher, & Steyer, 2014; Pituch, 2001; Plewis &
Hurry, 1998). Non-modeled student- and classroom-level
characteristics x treatment effects are not the only sources of
variance heterogeneity, for example, measurement error could
cause unequal vatiances (Bryk & Raudenbush, 1988).
Nonetheless, ignoring unequal variances may lead to biased
estimates of treatment effects ot to incorrect or incomplete
interpretations of mean (fixed) effects (Bryk & Raudenbush,
1988; Mayer et al., 2014).

A deeper understanding of the impact of a treatment
on achievement is possible by examining both means and
variances of Y. The latter reflect error variances estimated
for each classroom (6]-2, i=1,2,...,] classrooms) that
represent variation in Y after student predictors have been
taken into account. The premise is straightforward: We
desire a treatment that is effective for all treatment students
which implies these students benefit in a similar fashion from
exposure to the treatment; in this case the treatment
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condition mean would be larger, and the classroom residual
variances smaller than those of the control condition (ie.,
student achievement variability around classroom means is
smaller for the treatment condition). An intervention that
increases the treatment condition mean but produces larger
variances compared to the control condition implies that, on
average, the treatment is effective but treatment students do
not benefit equally from exposure to the intervention.

In multilevel models the relationship between
treatment and Y is assessed with a fixed effect, for example, a
classtoom-level slope (denoted by Yg, when treatment is
consideted the classroom predictor Wj; in equation (2))
capturing the impact of the treatment on Y. A statistical test
of §o1 yields two possible results: (a) Yo1 # 0 meaning there
is a treatment effect, (b) Yoq = 0 meaning there is no
treatment effect. If case (2) holds the treatment and control
Y-means differ (conditional on the model) and if ¥
(estimated treatment effect) > 0 the implication is that the
treatment on average raised student scores. A pattern in
which treatment classrooms also showed larger 6]?‘ than
control classrooms implies that some treatment students
benefited more than others relative to treatment classroom Y-
means compared to control classrooms, i.e., there is a student
X treatment interaction. This pattern suggests one or mote
variables are responsible for the student X treatment
interaction, and including these vatriables as predictors in 2
regtession model in which 8]? or some function of 6j2 serves
as the outcome can deepen our understanding of the
treatment effect. Table 1 lists all possible outcomes of
analyzing mean and variance differences in multilevel models.
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Table 1: Possible outcomes of analyzing mean and variance differences in multilevel models

Effect of Varance Heterogeneity Variance Homogeneity
~2 o ~2 =2 < A2 =2 _ =2
treatment Gir < Ojc Sir~ Ojc Sjr= i
Treatment students benefitted Some treatment students benefited Treatment on average
uniformly relative to treatment more than others relative to raised treatment
Treatment
. : classroom Y-means compared to treatment classroom  Y-means classroom Y-means and
is effective . s
Jo1 > 0) control classrooms. In this case, compared to control classrooms. vatiability around
Yor treatment had a homogenizing classroom Y-means was
effect. similar,
Although the treatment/control Although the treatment/control Failure of the treatment
mean  difference was not mean  difference was not to raise scores was
o treatment Significant, treatment tended to significant, treatment students did consistent across student
effect have a homogenizing effect on Y not respond uniformly. Some and teacher
& 0) scores. treatment students benefitted more characteristics.
Yo1 =

than others as reflected in variation
in Y scores about the classroom Y-
means.

Note. mwa" Estimated residual variance associated with treatment classrooms. m_.Nnu Estimated residual variance

associated with control classrooms. Y denotes the outcome variable of interest.
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Methods for Studying Variances

Several methods for analyzing vatiance heterogeneity in
multilevel settings have been proposed in the statistics
literature. Raudenbush and Bryk (1987) introduced the use of
a two-level hierarchical model along with a log-
transformation of residual variances to identify variables
related to differences in residual variances across level 2
clusters for an outcome variable. These authors first estimate
a standard two-level model (e.g., students within classrooms),
and then apply a transformation to level-1 (within-classroom)
residual variances involving the logarithmic function. Finally,
assuming normality, they fit a single-level linear regression
model to the log-transformed residual variances using
classroom-level (level 2) predictors. Raudenbush and Bryk
(1987) implemented this procedure in their Hierarchical
Linear Modeling (HLM) software but only level-1 predictors
can be used to model within-cluster variability in the current
version [Version 7] (Raudenbush, Bryk, Cheong, Congdon, &
du Toit, 2011). This limits the ability to identify classroom-
related factors that might impact the vatiance of Y. For the
interested reader, Leckie et al. (2014) provide an extensive
review of a series of model extensions that have been
ptoposed in the literature to analyze unequal within-cluster
variances in multilevel models.

The presence of variance heterogeneity has often
triggered the use of a vatiance-stabilizing transformation for
Y followed by a test of mean differences on the transformed
data (Bryk & Raudenbush, 1988; Howell, 2013). For
instance, Kim and Seltzer (2011) proposed a single-level
analysis of log-transformed residual variances obtained from
the estimation of a two-level hieratchical model. Kim and
Choi (2008) proposed an alternative to the log-transformation
in the dispersion model by modeling the square root of the
within-cluster residual vatiance (SD) as a function of
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classtoom-level predictors. Unfortunately successfully
interpreting the results in the transformed scale may be
challenging (Firth, 1988; Howell, 2013), and transforming the
(pteviously transformed) data back to their original scale to
enhance interpretation can be problematic because estimated
differences among means can be reversed in the original scale
(Grissom, 2000).

Alternatively, generalized linear models (GLMs) can
be used to directly model the residual variance. The
generalized modeling framework subsumes a variety of
distributional assumptions for the outcome variable and
provides maximum likelihood estimates of the parameters of
a regression model (McCullagh & Nelder, 1989; Neuhaus &
McCulloch, 2011). A gamma model is considered part of the
family of GLMs, and the gamma distribution is particularly
useful when modeling positively skewed data (McCullagh &
Nelder, 1989), such as tresidual variance. Another advantage
of GLMs is the possibility of a straightforward interpretation
of the results in the original scale (Firth, 1988; McCullagh &
Nelder, 1989). Thus the use of GLMs to directly model
residual variances represents an important option to consider
when analyzing heterogeneity.

The literature reviewed above directly provides three
methods for modeling variance heterogeneity for multilevel
data (Methods 1, 2, 3), and indirectly the foundation for a
new method which we propose (Method 4). These four
methods share the goal of studying variability to deepen
understanding of a treatment effect but employ different
statistical procedures. In all methods '0'\12 are computed using

ordinary least squares (OLS).
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Method 1

The first method allows the impact of student and classtoom
predictors (including treatment) on variability to be modeled
using a multilevel approach. Equations (1) and (2) define the
multilevel model being estimated. The HLM?7 software
(Bryk, Raudenbush, & Congdon, 2011) allows unequal 6j2to
be modeled using student-level predictors in  conjunction
with equations (1) and (2):

Ln(&é) =0y + Z .(X]'Cij (3)
]

where In represents the natural log, 0 an intercept, and o 2
slope.  If residuals (g; in equation (1)) are normally-
distributed, then In 6]? is approximately normally-distributed

with variance v; = dif (df = etror degrees of freedom) which
2

nj—Q-1
(Raudenbush & Bryk, 1987), nj = cluster sample size, Q=
number of student predictors. Cjj in equation (3) represents
student predictors used to account for variance heterogeneity.

It is impottant to emphasize that the same student
predictots could be used in the level 1 model in equation (1)
as well as in equation (3). For example, if gender is a
significant predictor at level 1 with an estimated slope of 5 we
would conclude that the Y-means of males and females differ
by 5 units (conditional on the model). In this case 6]-2 have
had the effects of gender removed in terms of the average
effect of gender on Y. However, a slope of 5 tells us nothing
about the ability of gender to predict variability of 8]-2.
Including gender in equations (1) and (3) can provide
information about whether means and variances differ across
males and females. In theory, level 2 (classroom) predictors
such as treatment could also be included to explain variance

in a level 1 (student) regression model is Vv; =
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heterogeneity. As noted earlier HLM7 limits equation (3) to
level 1 predictors.

Method 2

Method 2 allows the impact of classtoom predictors
(including treatment) on variability to be modeled with a
traditional normal-theory-based single-level regression.
Initially a linear model (i.e., equation (1)) is fitted to each
cluster (classtoom) and In 6}2 ate computed. The In 6]-2 are
then analyzed using a single level, weighted least squares
regression with classroom predictors and weights vj- 1 defined
in Method 1 —weights capture differences in classroom
sample sizes. Because 3j2 is computed independently for each
classroom using OLS, Method 2 can be performed without
any reference to multilevel modeling or multilevel software.
For example, using R statistical software (R Core Team, 2013)
we would fit the same level 1 regression model to each
classroom using OLS via the dplyr package in R and obtain

6]-2 and then apply the natural logarithm to '0'\]-2

Method 3

Method 3 also allows the impact of classroom predictors
including treatment on variability to be modeled with a single-
level regtession using a gamma model which is frequently
recommended for continuous nonnegative data (Firth, 1988;
McCullagh & Nelder, 1989). The within-classroom variances
are again obtained by fitting a linear model for each
classroom as in Methods 1 and 2. However, in this case the
residual variance is modeled directly using a GLM (available
in R statistical software via the glm function). Specifically, the
GLM can be written as follows:
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67 ~Gamma(u;, ¢)

g(w;) =n; *
nj = Bo + B1W;

where 7); represents a linear predictor, W is a classroom
predictot, B is an intercept, B, a slope, g(/i j) represents the
link function which in this case is the natural logarithm
g(u]-) = In(u;), and ¢ represents the dispersion parameter.
The link function connects the mean of the response variable
(4;) with the linear predictor (17;). Hence the outcome
variable is not transformed to estimate the model, as in
Method 2; rather the logarithm function is applied to the
expected value of the outcome variable. Weights v;~ 1 are also
2
n]-i(g—l (Raudenbush &
Bryk, 1987), nj = cluster sample size, and Q = number of
student predictors.

used in this method, where V; =

Method 4

The fourth method examines the impact of treatment on
variability using a meta-analytic approach that can be used
when classrooms, teachers, schools, etc. are matched.
Matching is widely tecommended as a way to control for pre-
existing cluster differences and enhance causal arguments
about a treatment (WWC, 2014). This produces a matched
pair of treatment and control classrooms. The difference
between In sz for each matched-pair is used to compute an
effect size (8) that serves as an outcome in a meta-analytic
regression:

6= In Gfreat(k) — In agontrol(k) ©®)
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In equation (5) InGZ ey ) is the natural logatithm of the
estimated within-classtoom error variance of the treatment
classroom within the k-th (k = 1,2,..., K) matched pair, and
In 6gontrol(k) represents the same for the control classroom
within the k-th matched pair. A test based on Raudenbush
(1997) is then used to test variability among the effect sizes
&y and the effect of moderators on &y,

A Study of STEM Achievement

To illustrate the four methods for modeling variance
heterogeneity we wuse data from a National Science
Foundation (NSF), Mathematics and Science Partnership
(MSP)-funded project. The project purpose is to increase
student learning of engineering, science and mathematics
concepts in Grades 4 - 8 using an engineering design-based
approach to teacher professional development and curricular
development. Treatment teachers teach curricular materials
developed within the project that reflect State and National
standards in STEM. In a three-week long summer workshop
teachers developed the curricula and increased their
understanding about a vatiety of science and mathematics
concepts and learned about engineering and technology
design. During the subsequent school year teachers then
implemented STEM curricular units.

Teachers who agreed to participate in the study but
did not patticipate in the professional development served as
a “business as usual” control condition. Because of the
hierarchical nature of the data, two-level (students within
classtooms) models were used to examine the impact of the
treatment. The main research question in the engineering
design-based cutriculum project asked was: In what ways
does patticipation in the engineering design-based curriculum
affect students’ content knowledge in the STEM disciplines?
A second importtant question was Does the treatment reduce
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gaps in achievement among students by race, gender, and
limited English proficiency (LEP) status? Both mean and
variance differences can help answer these questions.
Accordingly, we first present the traditional multilevel results
focused on mean differences and then use project data to
study variance heterogeneity using the four methods
described earlier.

Population and Sample, Research Design, and Variables
The sampled population(s) of the STEM achievement study
consisted of students and classrooms/teachers for grades 4-8
in a2 Midwest state. Treatment and control teachers were from
three large school districts serving diverse student
populations. Outcomes consisted of project-constructed
assessments designed to capture achievement in engineeting
(Authors et al, 2015). Student achievement scores were
reported in logits which are widely used in Rasch analyses of
test data and estimate a student’s proficiency on an outcome.
Both treatment and control students took engineering
assessments at the beginning and end of the engineering
design-based unit in which these topics were covered. Thus
both pretest and posttest data were available for these
assessments, with posttest data serving as the outcome.

Student predictors consisted of gender (0 = male, 1 =
female), race (Black, Asian, Hispanic, and White with the
latter serving as a teference group), and the engineeting
ptetest scores. Classroom predictors included treatment
(treatment = 1, control = 0), years of teaching experience,
years in current position, petcentage of special education
students, and petcentage of LEP students.

The study also used matching to provide a sensitivity
test of findings from the two-level multilevel model with
control variables. Treatment and control teachers were

initially matched using propensity scores (Dehejia & Wahba,
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2002), then using the Matchlt R package (Sekhon, 2011) we
petform “one-to-one” matching. The final sample used in
this study consisted of about 2,300 students: 1,443 students
cotresponding to 17 treatment teachers, and 852 students to
17 control teachers (multiple sections of the same class taught
by the same teacher were pooled into a single class).

Applying the Four Methods for Studying Variances to
STEM Achievement Data

We first fitted the model specified in equations (1) and (2)
with the above student and classroom predictors. The results
in Table 2 show that engineering pretest is a significant
predictor of engineering posttest. Notice that treatment was
not a significant predictor of engineering posttest scores
(Vo1 = —542, p = .052), meaning that there was not a mean
difference in engineering posttest scores between treatment
and control conditions (conditional on the model). Howevet,
the Bartlett test of homogeneity of variances (available within
HI.M7) was used to detect heterogeneity and was statistically
significant (p < .05). Thus, there is a significant difference in
residual variances across the ] classrooms. This signals that
there is probably a student X treatment interaction, meaning
that the treatment tended to produce scores that were
bunched together or spread out (relative to control
classrooms). Figure 1 presents box plots to illustrate the
range of the residual variance for treatment and control
classrooms, treatment classrooms tend to have slightly
smaller residual variances that show a greater range than
those for control classrooms.

Applying Method 1 to within-classroom residual variances
(see Table 3) showed that (a) engineering pretest was not a

significant predictor of Ing? (@ = .003, p = .895)
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suggesting that engineering pretest scores were unrelated to
classtoom variances, (b) females scored on average higher
than males ( ¥,9 = .150, p = .002) but variability in posttest
scotes was the same across males and females (@, = — .122,
p = .057), (c) Asian students scored on average lower than
White students on the engineeting posttest ( Y39 = —.208, p
= .004) but their scores were less variable than White
students (03 = —.181, p = .030). Thus, when investigating
the effect of level 1 predictors on differences in variability we
found the STEM engineering intervention produced a
homogenizing effect for
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Table 2: Estimation results of the multilevel model for the engineering posttest outcome

Fixed Effects Coefficient SE f-ratio p-value
For Intercept Level 1, o

Intercept level 2, yoo 1.095 0.517 2.118 0.047*
Treatment, yo: -0.542 0.263 -2.064 0.052
Level, yo2 -0.231 0.222 -1.040 0.311
LEP, yos 0.114 0.097 1.172 0.256
Special education, yos -0.082 0.082 -0.999 0.330
Years teaching experience, yos -0.089 0.109 -0.811 0.427
Years cutrent position, yos -0.026 0.118 -0.224 0.826
Years current school, yor -0.163 0.132 -1.234 0.232
Gender of teacher, yos -0.302 0.212 -1.424 0.170
Quality of curriculum unit, yo -0.038 0.137 -0.280 0.782
Type of eng. mntegration, Yoo 0.217 0.162 1.338 0.196
HﬂﬁOHuv Yott O.MON 0.162 1.810 0.085

For Engineering Pre Score slope, B1
Intercept level 2, yio 0.588 0.134 4.402 0.000*
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Table 2: Estimation results of the multilevel model for the engineering posttest outcome (cont.)

Fixed Effects Coetficient SE /-ratio p-value
Treatment, yu 0.041 0.318 0.129 0.899
Level, ya2 -0.136 0.299 -0.455 0.653
LEP, ys -0.083 0.125 -0.662 0.515
Special education, yu -0.049 0.108 -0.455 0.653
Years teaching experience, yas -0.152 0.149 -1.020 0.320
Years current position, yas -0.012 0.157 -0.074 0.942
Years current school, ys 0.082 0.174 0.472 0.642
Gender of teacher, yas -0.322 0.234 -1.377 0.184
Quality of curriculum unit, ya 0.064 0.165 0.385 0.704
Type of eng. integration, y4io -0.501 0.218 -2.302 0.032*
RTOP, yau -0.009 0.210 -0.045 0.965
For Black slope, 35
Intercept level 2, yso 0.272 0.570 0.477 0.638
Treatment, ys -0.082 0.278 -0.295 0.771
Level, ys -0.476 0.272 -1.750 0.095
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Figure 1. Boxplot of OLS residual variance by treatment
condition for all classrooms.

Asian students compared with White students. That is, the
logarithms of the residual variance estimates were smaller for
Asian students than for theit White counterparts indicating
the responses of Asian students to the intervention were
more similar than those of White students; the latter suggest
more scores varied more (higher or lower than the mean) for
White students compared to the former. This finding could
guide efforts to better understand why there was greater
variation in mastery of the material among White students.
Changes in cutticulum program or in teachers’ preparation
could help assure patterns of scores do not differ by race, an
important instructional goal.
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Table 3: Estimation results of multilevel modeling of
log-transformed residual variances

Parameter Estimate SE Z p-value
Intercept, oo 0.198 0.058 3.403 0.001
Pretest, o 0.003 0.023 0.133 0.895
Gender, o> -0.122 0.064 -1.900 0.057
Asian | a3 -0.181 0.083 -2.167 0.030
Hispanic, o4 0.095 0.110 0.861 0.389
Black, as 0.038 0.088 0.437 0.662

Method 1 offers insight into the effect of level 1
predictots on variance heterogeneity whereas Methods 2 and
3 allow the impact of classroom-related factors on variability
in the outcome variable to be investigated, and these are
llustrated next.

For Method 2 we fitted a single regression model with
one predictor to explain vatiance heterogeneity between
treatment and control classrooms. This model adopted the
following mathematical representation:

In6? = By + B1W; + ¢, ©)

where ln5j2 trepresents the outcome variable, W; is the
ptedictor representing the treatment condition for each
classroom (1 = treatment, 0 = control), B¢ is the intercept of
the model and B is the slope for the treatment predictor
which captutes the impact of engineering curriculum
implementation on residual variances. We are interested in {3
because this patameter indicates whether the variances of
treatment classrooms were latger, equal to, or smaller than
those of control classrooms. Table 4 shows that the natural
logarithm of the variance in treatment classrooms was on
average significantly smaller than the natural logarithm of the
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variance in control classrooms (B; = —.226, p = .022). This
suggests that the engineering cutriculum implementation
tended to produce a homogenizing effect across students in
treatment classrooms compared to students in control
classrooms. In other words, treatment did not on average
raise posttest scores (since there was not a treatment effect
resulting from equations (1) and (2)) but treatment seemed to
produce less within-classroom variability compared to control
classtooms.  This result is particularly important when
programs are designed to decrease variability among students
such as those aiming to reduce achievement gaps. In this
context, differences in variability would indicate that even
though on average treatment students did not present higher
scores, students reacted to the intetvention in similar ways.
Method 3 used the generalized modeling framework
to investigate the relationship between residual variances and
the treatment condition. The residual variance is a non-
negative positively skewed variable (skew = 2.169, kurtosis =
7.188) that can be directly modeled by assuming a gamma
distribution. The model is represented in equation (4) in
which 8']-2 is the outcome variable and Wj is a dichotomous
variable representing the treatment condition for each
classroom. Results in Table 4 show that the variance in
classrooms where the treatment was implemented was
significantly smaller than in classrooms under the business as
usual condition <B1 = —.269, p = .007), indicating that
treatment had a homogenizing effect. The results for
Methods 2 and 3 have the same practical interpretation but
the advantage of Method 3 is the possibility of discussing
differences in dispersion in the variance scale (as shown
below) instead of in the log-variance scale (as in Method 2).
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Table 4: Estimation results of Methods 2 and 3

Variable Estimate  SE f-ratio p-value
Method 2: single level regression of log-transformed 61-2
(Intercept) 0.220 0.075 2.934 0.006
Treatment -0.226 0.094 -2.414 0.022
Method 3: generalized gamma linear model of ’sz
(Intercept) 0.155 0.086 0.071
Treatment -0.269 0.099 0.007

Note. Method 2: R-square = 0.158. Method 3: Deviance = 66.667, AIC = -59.682.

As previously mentioned one of the advantages of the GLM
framework is the possibility of a straightforward
intetpretation of the results in the original scale. Since the

link function in this model is the natural logarithm g(u j) =
In(g;) =7 = Bo + B:Wj, then p; = exp(Bo + BiW)).
The estimated residual variance for the control condition
(W; =0) equals exp(Bo) = exp(.155) = 1.167 (B, =
155, p = .071), and for the treatment condition (W; = 1)

equals eXp(Go + Gl) = exp(. 155 — .269) = .892. Hence,
the difference in variability between the treatment and control
conditions is given by exp(Go + Bl) - exp(Go) = —.275,
which means that the residual variance of the engineering
scores in the treatment condition is .275 units smaller than in
the control condition.

In the meta-analytic approach (Method 4) we
estimated a unique effect size for each pair of matched
classrooms by computing the difference in In 8]-2 of the
treatment and control classrooms (see equation 5). In total
we obtained 17-effect sizes and then estimated the average
weighted effect size across paits as -.215, which suggests that
on average treatment classrooms were less variable than
control classrooms. Qur next step was to perform a
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statistical test to examine variability among the effect sizes
(Raudenbush, 1997), which was statistically significant
(148.456, p < .001) and indicates that effect sizes were
heterogeneous, meaning some classrooms showed similar
variation in treatment-control variances whereas others
showed greater variation. This finding suggest non modeled
teacher or classroom vatiables (e.g., years of experience, class
size) may be responsible. Notice the practical interpretation
of this method is based on effect sizes rather than the residual
variance as in Method 3 ot in the log-residual variance as in
Method 2.

In summary, a comprehensive investigation of
treatment effects is possible by coupling mean-oriented fixed
effects results of multilevel models with methods to analyze
variance heterogeneity. The four methods illustrated in this
study serve different purposes which should guide adoption
of one or more of these methods. Method 1 focuses on
examining the relationship between level 1 predictors and
log-transformed residual vatiances, whereas Methods 2, 3 and
4 investigate the effect of the level 2 treatment condition (a
classtoom-level predictor) on variability of the outcome
variable. Applying Method 1 to STEM achievement data
showed Asian students presented less within-classroom
variability (were more homogeneous given the model) than
White students. Methods 2, 3 and 4 provided the same
general conclusion for the STEM achievement data in that
students in the treatment condition showed less variability in
posttest scotes than students in the control condition (given
the model). Differences between the last three methods are
due to the nature of the outcome variable: Method 2 employs
a log-variance scale, Method 3 a within-classroom residual
variance scale, and Method 4 uses effect sizes. The results of
all methods provide insight into whether students reacted
similarly or not, and if the latter should prompt additional
investigation to identify sources of differences in variances.
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Discussion

The current study desctibed and illustrated four methods for
investigating vatiance heterogeneity that can deepen
undetstanding of a treatment using data from an engineering
design-based STEM cutriculum study. Using a traditional
multilevel modeling approach we found that integrated
STEM instruction was not a significant predictor of
engineering posttest scores (ie., treatment and control
conditions had the same mean achievement given the model).
However, there was variance heterogeneity across treatment
and control classrooms. Method 1 analyzed the relationship
between log-transformed residual variances and student level
predictors, allowing the role of student charactetistics on
variability to be exploted. For example, the STEM
engineering integration intervention produced a difference in
engineering posttest means among male and female students
but no relationship between classroom variances and gender.
The latter finding implies that male and female students
responded similatly on the outcome and suggests that the
cutriculum program does not need to be modified to help
ensure gender is untrelated to dispetsion. On the other hand,
the results also indicated that White students on average
scoted higher than Asian students on the engineering posttest
and that Asian students showed less variability in scores
(relative to classtoom means) and White students more
variability (relative to classroom means). Ideally White and
Asian students would tespond similarly to the curriculum
program and these findings may suggest a need to examine
the curriculum for clues about why differences in variability
emerged.

Methods 2 and 3 use level 2 (classroom) predictors to
explain variability in the outcome variable using a single-level
regression model. Method 4 provides an additional option to
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investigate residual variances that, to our knowledge, has not
been used in the educational literature. Educational studies
that allow the meta-analytic framework to be applied produce
information about differences in effect sizes and their
telationship with different predictors including treatment.
Methods 2, 3 and 4 showed that students in the treatment
condition generally demonstrated less dispersion in
engineeting posttest scores than students in the control
condition.

Although Methods 2, 3 and 4 represent an option to
investigate the effect of classroom level predictors and no
special multilevel software is needed to implement them,
there are important differences between the three methods
worth noticing. The difference between Methods 2 and 3 lies
in the modeling framework that accommodates the outcome
variable under study. Method 2 is located under normal
statistical theoty and involves a nonlinear transformation
(logarithmic) of the residual vatriance estimates. Method 3
deviates from the normality assumption and models the
tesidual variance estimates directly by assuming a gamma
distribution. The practical implication of these two choices is
the scale of the results: It is possible to have an interpretation
in the original scale when using Method 3 but interpretations
of the results for Method 2 need to be in the logarithmic
scale. Method 4 focuses on analyzing differences in effect
sizes, that is, it examines whether classtroom level predictors
are related to differences in variability between matched pairs
of treatment and control classrooms. Notice that matched
pairs of classrooms, teachers, schools, etc. are necessary to
implement Method 4, which may impose a significant data
restriction.

In general, the four methods represent different
options for the analysis of variance heterogeneity in
educational studies that provide evidence of whether
treatment and control conditions and/or student and teacher
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characteristics account for heterogeneity. In conjunction with
analyses of mean differences in multilevel models the results
of modeling variance hetetogeneity help to answer the
research questions posed earlier in ways that enrich inferences
about the impact of an educational intervention on students.
We recommend Method 1 when the focus of research is on
level 1 predictors only. When classroom predictors ate of
interest, researchers should turn to Methods 2, 3 ot 4 with the
choice depending on the researcher’ preference for the
outcome variable and interpretation of results.
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